Introduction to Proofs

Section 1.7

Section Summary

- Mathematical Proofs
- Forms of Theorems
- Direct Proofs
- Indirect Proofs
- Proof of the Contrapositive
- Proof by Contradiction

Proofs of Mathematical Statements

- A proof is a valid argument that establishes the truth of a statement.
- In math, CS, and other disciplines, informal proofs which are generally shorter, are generally used.
- More than one rule of inference are often used in a step.
- Steps may be skipped.
- The rules of inference used are not explicitly stated.
- Easier to understand and to explain to people.
- But, it is also easier to introduce errors.

Definitions

- A theorem is a statement that can be shown to be true using:
- definitions
- other theorems
- axioms (statements which are given as true)
- rules of inference
- A lemma is a 'helping theorem' or a result which is needed to prove a theorem.
- A corollary is a result which follows directly from a theorem.
- Less important theorems are sometimes called propositions.
- A conjecture is a statement that is being proposed to be true. Once a proof of a conjecture is found, it becomes a theorem. It may turn out to be false.

Proving Theorems

- Many theorems have the form:

$$
\forall x(P(x) \rightarrow Q(x))
$$

- To prove them, we show that where c is an arbitrary element of the domain,

$$
P(c) \rightarrow Q(c)
$$

- So, we must prove something of the form:

$$
p \rightarrow q
$$

- By universal generalization the truth of the original formula follows.

Proving Conditional Statements: $p \rightarrow q$

- Direct Proof: Assume that p is true. Bring axioms, definitions, rules of inference, and logical equivalences to show that q must also be true.
Example: Give a direct proof of the theorem "If n is an odd integer, then n^{2} is odd."
Solution: Assume that n is odd. Then $n=2 k+1$ for an integer k. Squaring both sides of the equation, we get: $n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1=2 r+1$, where $r=2 k^{2}+2 k$, an integer.
We have proved that if n is an odd integer, then n^{2} is an odd integer.
(4 marks the end of the proof. Sometimes QED is

Proving Conditional Statements: $p \rightarrow q$

- Trivial Proof: If we know q is true, then
$p \rightarrow q$ is true as well.
"If it is raining then $1=1$."
- Vacuous Proof: If we know p is false then

$$
p \rightarrow q \text { is true as well. }
$$

"If I am both rich and poor, then $2+2=5$."

Proving Conditional Statements: $p \rightarrow q$

- Proof by Contraposition: Assume $\neg q$ and show $\neg p$ is true also. This is sometimes called an indirect proof method. If we give a direct proof of $\neg q \rightarrow \neg p$ then we have a proof of $p \rightarrow \mathrm{q}$.

Why does this work?
Example: Prove that if n is an integer and $3 n+2$ is odd, then n is odd.
Solution: Assume n is even. So, $n=2 k$ for some integer k. Thus

$$
3 n+2=3(2 k)+2=6 k+2=2(3 k+1)=2 j \text { for } j=3 k+1
$$

Therefore $3 n+2$ is even. Since we have shown $\neg q \rightarrow \neg p, p \rightarrow q$ must hold as well. If n is an integer and $3 n+2$ is odd (not even), then n is odd (not even).

Proving Conditional Statements: $p \rightarrow q$

Example: Prove that for an integer n, if n^{2} is odd, then n is odd.
Solution: Use proof by contraposition. Assume n is even (i.e., not odd). Therefore, there exists an integer k such that $n=2 k$. Hence,

$$
n^{2}=4 k^{2}=2\left(2 k^{2}\right)
$$

and n^{2} is even(i.e., not odd).
We have shown that if n is an even integer, then n^{2} is even. Therefore by contraposition, for an integer n, if n^{2} is odd, then n is odd.

Proving (Conditional) Statements: $(q \rightarrow) p$

- Proof by Contradiction: (AKA reductio ad absurdum).

To prove p, assume $\neg p$ and derive a contradiction such as $p \wedge \neg p$. (an indirect form of proof). Since we have shown that $\neg p \rightarrow \mathrm{~F}$ is true , it follows that the contrapositive $\mathbf{T} \rightarrow p$ also holds.

Proof by Contradiction

Example: Use a proof by contradiction to give a proof that $\sqrt{2}$ is irrational.
Solution: Suppose $\sqrt{2}$ is rational. Then there exists integers a and b with $\sqrt{2}=a / b$, where $b \neq O$ and a and b have no common factors (see Chapter 4). Then

$$
2=\frac{a^{2}}{b^{2}} \quad 2 b^{2}=a^{2}
$$

Therefore a^{2} must be even. If a^{2} is even then a must be even (an exercise). Since a is even, $a=2 c$ for some integer c. Thus,

$$
2 b^{2}=4 c^{2} \quad b^{2}=2 c^{2}
$$

Therefore b^{2} is even. Again then b must be even as well.
But then 2 must divide both a and b. This contradicts our assumption that a and b have no common factors. We have proved by contradiction that our initial assumption must be false and therefore $\sqrt{ } 2$ is irrational.

Theorems that are Biconditional Statements

- To prove a theorem that is a biconditional statement, that is, a statement of the form $p \leftrightarrow q$, we show that $\quad p \rightarrow q$ and $q \rightarrow p$ are both true.

Sometimes iff is used as an abbreviation for "if an only if," as in "If n is an integer, then n is odd iff n^{2} is odd."

What is wrong with this?

"Proof" that $1=2$

Step

1. $a=b$
2. $a^{2}=a \times b$
3. $a^{2}-b^{2}=a \times b-b^{2}$
4. $(a-b)(a+b)=b(a-b)$
5. $a+b=b$
6. $2 b=b$
7. $2=1$

Reason

Premise
Multiply both sides of (1) by a
Subtract b^{2} from both sides of (2)
Algebra on (3)
Divide both sides by $a-b$
Replace a by b in (5) because $a=b$
Divide both sides of (6) by b

Solution: Step 5. $\mathrm{a}-\mathrm{b}=0$ by the premise and division by 0 is undefined.

Looking Ahead

- If direct methods of proof do not work:
- We may need a clever use of a proof by contraposition.
- Or a proof by contradiction.
- In the next section, we will see strategies that can be used when straightforward approaches do not work.
- In Chapter 5, we will see mathematical induction and related techniques.
- In Chapter 6, we will see combinatorial proofs

