Introduction to Proofs Section 1.7

Section Summary

- Mathematical Proofs
- Forms of Theorems
- Direct Proofs
- Indirect Proofs
 - Proof of the Contrapositive
 - Proof by Contradiction

Proofs of Mathematical Statements

- A *proof* is a valid argument that establishes the truth of a statement.
- In math, CS, and other disciplines, informal proofs which are generally shorter, are generally used.
 - More than one rule of inference are often used in a step.
 - Steps may be skipped.
 - The rules of inference used are not explicitly stated.
 - Easier to understand and to explain to people.
 - But, it is also easier to introduce errors.

Definitions

- A *theorem* is a statement that can be shown to be true using:
 - definitions
 - other theorems
 - axioms (statements which are given as true)
 - rules of inference
- A *lemma* is a 'helping theorem' or a result which is needed to prove a theorem.
- A *corollary* is a result which follows directly from a theorem.
- Less important theorems are sometimes called *propositions*.
- A *conjecture* is a statement that is being proposed to be true. Once a proof of a conjecture is found, it becomes a theorem. It may turn out to be false.

Proving Theorems

• Many theorems have the form:

 $\forall x (P(x) \to Q(x))$

- To prove them, we show that where c is an arbitrary element of the domain, $P(c) \to Q(c)$
- So, we must prove something of the form: p
 ightarrow q
- By universal generalization the truth of the original formula follows.

• **Direct Proof:** Assume that *p* is true. Bring <u>axioms</u>, <u>definitions</u>, <u>rules of inference</u>, and <u>logical equivalences</u> to show that *q* must also be true.

Example: Give a direct proof of the theorem "If n is an odd integer, then n^2 is odd."

Solution: Assume that *n* is odd. Then n = 2k + 1 for an integer *k*. Squaring both sides of the equation, we get: $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1 = 2r + 1$, where $r = 2k^2 + 2k$, an integer.

We have proved that if n is an odd integer, then n^2 is an odd integer.

(marks the end of the proof. Sometimes **QED** is used instead.)

Trivial Proof: If we know *q* is true, then
 p → *q* is true as well.
 "If it is raining then 1=1."

Vacuous Proof: If we know *p* is false then
 p → *q* is true as well.
 "If I am both rich and poor, then 2 + 2 = 5."

• **Proof by Contraposition:** Assume $\neg q$ and show $\neg p$ is true also. This is sometimes called an <u>indirect</u> proof method. If we give a direct proof of $\neg q \rightarrow \neg p$ then we have a proof of $p \rightarrow q$.

Why does this work?

Example: Prove that if *n* is an integer and 3n + 2 is odd, then *n* is odd.

Solution: Assume *n* is even. So, n = 2k for some integer *k*. Thus

3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1) = 2j for j = 3k + 1

Therefore 3n + 2 is even. Since we have shown $\neg q \rightarrow \neg p$, $p \rightarrow q$ must hold as well. If *n* is an integer and 3n + 2 is odd (not even), then *n* is odd (not even).

Example: Prove that for an integer n, if n^2 is odd, then n is odd. **Solution**: Use proof by contraposition. Assume n is even (i.e., not odd). Therefore, there exists an integer k such that n = 2k. Hence,

 $n^2 = 4k^2 = 2(2k^2)$

and n^2 is even(i.e., not odd).

We have shown that if *n* is an even integer, then n^2 is even. Therefore by contraposition, for an integer *n*, if n^2 is odd, then *n* is odd.

• **Proof by Contradiction:** (AKA reductio ad absurdum).

To prove p, assume $\neg p$ and derive a contradiction such as $p \land \neg p$. (an indirect form of proof). Since we have shown that $\neg p \rightarrow \mathbf{F}$ is true, it follows that the contrapositive $\mathbf{T} \rightarrow p$ also holds.

Proof by Contradiction

Example: Use a proof by contradiction to give a proof that $\sqrt{2}$ is irrational.

Solution: Suppose $\sqrt{2}$ is rational. Then there exists integers *a* and *b* with $\sqrt{2} = a/b$, where $b \neq 0$ and *a* and *b* have no common factors (see Chapter 4). Then

$$2 = \frac{a^2}{b^2} \qquad 2b^2 = a^2$$

Therefore a^2 must be even. If a^2 is even then *a* must be even (an exercise). Since *a* is even, a = 2c for some integer *c*. Thus,

$$2b^2 = 4c^2$$
 $b^2 = 2c^2$

Therefore b^2 is even. Again then *b* must be even as well.

But then 2 must divide both *a* and *b*. This contradicts our assumption that *a* and *b* have no common factors. We have proved by contradiction that our initial assumption must be false and therefore $\sqrt{2}$ is irrational.

Theorems that are Biconditional Statements

To prove a theorem that is a biconditional statement, that is, a statement of the form *p* ↔ *q*, we show that *p* → *q* and *q* → *p* are both true.

Sometimes *iff* is used as an abbreviation for "if an only if," as in "If *n* is an integer, then *n* is odd *iff* n^2 is odd."

What is wrong with this?

"Proof" that 1 = 2

StepReason1. a = bPremise2. $a^2 = a \times b$ Multiply both sides of (1) by a3. $a^2 - b^2 = a \times b - b^2$ Subtract b^2 from both sides of (2)4. (a - b)(a + b) = b(a - b)Algebra on (3)5. a + b = bDivide both sides by a - b6. 2b = bReplace a by b in (5) because a = b7. 2 = 1Divide both sides of (6) by b

Solution: Step 5. a - b = 0 by the premise and division by 0 is undefined.

Looking Ahead

• If direct methods of proof do not work:

- We may need a clever use of a proof by contraposition.
- Or a proof by contradiction.
- In the next section, we will see strategies that can be used when straightforward approaches do not work.
- In Chapter 5, we will see mathematical **induction** and related techniques.
- In Chapter 6, we will see **combinatorial proofs**